STUDI KASUS MORFOLOGI NANOFIBER POLIVINIL ALKOHOL (PVA) TERHADAP HIDROFOBISITAS PERMUKAAN YANG DINILAI DENGAN PENGUKURAN SUDUT KONTAK

Authors

  • Yoga Maharesha Berly Universitas Malahayati, Lampung
  • Tumpal Ojahan Rajagukguk Universitas Malahayati, Lampung
  • Yusup Hendronursito Badan Riset dan Inovasi Nasional, Lampung

DOI:

https://doi.org/10.53067/bmj.v2i4.71

Keywords:

Nanofiber, PVA, Electrospinning, Voltage, Distance, Morphology, Contact Angle

Abstract

Nanofiber is a fiber measuring nanometers to micrometers, often used in the medical, energy, filtration, and other fields. The formation of nanofiber with the main ingredient, namely Polyvinyl Alcohol (PVA), this is because of its biodegradable, biocompatible, and chemically stable properties, but has the weakness of being easily degraded when in contact with water. This study examines the effect of electrospinning parameters on the morphology of 10% w/v PVA nanofiber, with parameters namely voltage of 10 and 12 kV, nozzle-collector distance of 10 and 15 cm. Morphological testing was carried out using a Field Emission-Scanning Electron Microscope (FE-SEM) and Contact Angle (CA) test. The test results show that PVA nanofiber has a fiber diameter with a value of NFZ.1; 80 - 406 nm, NFZ.2; 61.7 - 248.9 nm, with a continuous fiber structure and without significant defects, the resulting contact angle value of NFZ.1; 50.05o and NFZ.2; 38.75o, the contact angle value of NFZ.1 is higher than NFZ.2. The nanofiber with the smallest diameter is NFZ.2 and the largest contact angle value is NFZ.1. The results of this research show that the morphology of nanofiber significantly influences the contact angle value.

References

Aslam, M., Kalyar, M. A., & Raza, Z. A. (2018). Polyvinyl alcohol: A review of research status and use of polyvinyl alcohol based nanocomposites. Polymer Engineering & Science, 58(12), 2119–2132. https://doi.org/10.1002/pen.24855

Fajariah, A. R., Adiperdana, B., Faizal, F., Aprilia, A., & Safriani, L. (2023). Effects of the morphology and diameter of TiO2 nanofibers as light-scattering layers on the efficiency of dye-sensitized solar cells. Materials Research Express, 10(10), 1–8. https://doi.org/10.1088/2053-1591/ad028b

Ko, F. K., & Wan, Y. (2014). Introduction to Nanofiber Materials. Cambridge University Press: New York. https://doi.org/10.1017/CBO9781139021333

Krisnandika, V. E. (2017). Produksi nanofiber dan aplikasinya dalam pengolahan air. Zenodo, (versi 1). https://doi.org/10.5281/zenodo.1133804

Law, K. Y. (2014). Definitions for hydrophilicity, hydrophobicity, and superhydrophobicity Getting the basics right. Journal of Physical Chemistry Letters, 5(4), 686–688. https://doi.org/10.1021/jz402762h

Masta, N. (2020). Scanning electron microscopy. In Buku materi pembelajaran. Pendidikan Fisika, Universitas Kristen Indonesia: Jakarta.

Nasir, M. (2013). Sintesis dan karakterisasi nanokomposit konduktif nanofiber. Jurnal Kimia Terapan Indonesia, 15(1), 57–59. https://doi.org/10.14203/jkti.v15i1.105

Patil, J. V., Mali, S. S., Kamble, A. S., Hong, C. K., Kim, J. H., & Patil, P. S. (2017). Electrospinning: A versatile technique for making of 1D growth of nanostructured nanofibers and its applications: An experimental approach. Applied Surface Science, 423, 641–674. https://doi.org/10.1016/j.apsusc.2017.06.116

Pickett, A. N. (2012). Electrospinning Applications in Mechanochemistry and Multi-Functional Hydrogel Materials. In Thesis. Dept of Material Science and Engineering. University of Illinois: Urbana-Champaign. https://apps.dtic.mil/sti/citations/ADA576080

Premraj, R., & Doble, M. (2005). Biodegradation of Polymers. Indian Jurnal of Biotechnology, 4(2), 186–193. https://www.researchgate.net/publication/285534816_Biodegradation_of_polymers

Putra, W. R., Negara, I. M. Y., & Satriyadi, I. (2015). Pengaruh Bentuk dan Material Elektrode terhadap Partial Discharge. Jurnal Teknik Elektro, 4(1), 47–51.

Putri, A. R., Kusumawati, D. H., & Suaebah, E. (2024). Karakteristik Wettability (Contact Angle) Pada Nanofiber Pani/Pva/Go Sebagai Separator Baterai Lithium-Ion. Inovasi Fisika Indonesia, 13(3), 33–39. https://doi.org/10.26740/ifi.v13n3.p33-39

Putri, I. S. (2023). Pengaruh tegangan electrospinning pada pembentukan serat nano titanium dioksida (TiO2). In Magister Thesis. Program Studi Magister Fisika. Universitas lampung: Bandar Lampung. http://digilib.unila.ac.id/id/eprint/69037

Ropikoh, S. U. (2019). Sintesis nanofiber kitosan/polyvinyl alcohol dengan metode electrospinning: kajian viskositas larutan. Departemen Fisika Fakul-tas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor.

Sari, T. I. (2018). Optimasi nanofiber hasil electrospinning. In Tugas Akhir. Departemen Fisika. Institut Teknologi Sepuluh Nopember: Surabaya. http://repository.its.ac.id/id/eprint/50051

Subbiah, T., Bhat, G. S., Tock, R. W., Parameswaran, S., & Ramkumar, S. S. (2005). Electrospinning of nanofibers. Journal of Applied Polymer Science, 96(2), 557–569. https://doi.org/10.1002/app.21481

Tavana, H., Lam, C. N. C., Grundke, K., Friedel, P., Kwok, D. Y., Hair, M. L., & Neumann, A. W. (2004). Contact angle measurements with liquids consisting of bulky molecules. Journal of Colloid and Interface Science, 279(2), 493–502. https://doi.org/10.1016/j.jcis.2004.06.090

Wahyudi, T., & Sugiyana, D. (2011). Pembuatan Serat Nano Menggunakan Metode Electrospinning. Arena Tekstil, 26(1), 29–34. https://doi.org/10.31266/at.v26i1.1439

Downloads

Published

2025-08-04

How to Cite

Berly, Y. M. ., Rajagukguk, T. O. ., & Hendronursito, Y. . (2025). STUDI KASUS MORFOLOGI NANOFIBER POLIVINIL ALKOHOL (PVA) TERHADAP HIDROFOBISITAS PERMUKAAN YANG DINILAI DENGAN PENGUKURAN SUDUT KONTAK. Bhinneka Multidisiplin Journal, 2(4), 218–225. https://doi.org/10.53067/bmj.v2i4.71