STUDI KASUS MORFOLOGI NANOFIBER POLIVINIL ALKOHOL (PVA) TERHADAP HIDROFOBISITAS PERMUKAAN YANG DINILAI DENGAN PENGUKURAN SUDUT KONTAK
DOI:
https://doi.org/10.53067/bmj.v2i4.71Keywords:
Nanofiber, PVA, Electrospinning, Voltage, Distance, Morphology, Contact AngleAbstract
Nanofiber is a fiber measuring nanometers to micrometers, often used in the medical, energy, filtration, and other fields. The formation of nanofiber with the main ingredient, namely Polyvinyl Alcohol (PVA), this is because of its biodegradable, biocompatible, and chemically stable properties, but has the weakness of being easily degraded when in contact with water. This study examines the effect of electrospinning parameters on the morphology of 10% w/v PVA nanofiber, with parameters namely voltage of 10 and 12 kV, nozzle-collector distance of 10 and 15 cm. Morphological testing was carried out using a Field Emission-Scanning Electron Microscope (FE-SEM) and Contact Angle (CA) test. The test results show that PVA nanofiber has a fiber diameter with a value of NFZ.1; 80 - 406 nm, NFZ.2; 61.7 - 248.9 nm, with a continuous fiber structure and without significant defects, the resulting contact angle value of NFZ.1; 50.05o and NFZ.2; 38.75o, the contact angle value of NFZ.1 is higher than NFZ.2. The nanofiber with the smallest diameter is NFZ.2 and the largest contact angle value is NFZ.1. The results of this research show that the morphology of nanofiber significantly influences the contact angle value.
References
Aslam, M., Kalyar, M. A., & Raza, Z. A. (2018). Polyvinyl alcohol: A review of research status and use of polyvinyl alcohol based nanocomposites. Polymer Engineering & Science, 58(12), 2119–2132. https://doi.org/10.1002/pen.24855
Fajariah, A. R., Adiperdana, B., Faizal, F., Aprilia, A., & Safriani, L. (2023). Effects of the morphology and diameter of TiO2 nanofibers as light-scattering layers on the efficiency of dye-sensitized solar cells. Materials Research Express, 10(10), 1–8. https://doi.org/10.1088/2053-1591/ad028b
Ko, F. K., & Wan, Y. (2014). Introduction to Nanofiber Materials. Cambridge University Press: New York. https://doi.org/10.1017/CBO9781139021333
Krisnandika, V. E. (2017). Produksi nanofiber dan aplikasinya dalam pengolahan air. Zenodo, (versi 1). https://doi.org/10.5281/zenodo.1133804
Law, K. Y. (2014). Definitions for hydrophilicity, hydrophobicity, and superhydrophobicity Getting the basics right. Journal of Physical Chemistry Letters, 5(4), 686–688. https://doi.org/10.1021/jz402762h
Masta, N. (2020). Scanning electron microscopy. In Buku materi pembelajaran. Pendidikan Fisika, Universitas Kristen Indonesia: Jakarta.
Nasir, M. (2013). Sintesis dan karakterisasi nanokomposit konduktif nanofiber. Jurnal Kimia Terapan Indonesia, 15(1), 57–59. https://doi.org/10.14203/jkti.v15i1.105
Patil, J. V., Mali, S. S., Kamble, A. S., Hong, C. K., Kim, J. H., & Patil, P. S. (2017). Electrospinning: A versatile technique for making of 1D growth of nanostructured nanofibers and its applications: An experimental approach. Applied Surface Science, 423, 641–674. https://doi.org/10.1016/j.apsusc.2017.06.116
Pickett, A. N. (2012). Electrospinning Applications in Mechanochemistry and Multi-Functional Hydrogel Materials. In Thesis. Dept of Material Science and Engineering. University of Illinois: Urbana-Champaign. https://apps.dtic.mil/sti/citations/ADA576080
Premraj, R., & Doble, M. (2005). Biodegradation of Polymers. Indian Jurnal of Biotechnology, 4(2), 186–193. https://www.researchgate.net/publication/285534816_Biodegradation_of_polymers
Putra, W. R., Negara, I. M. Y., & Satriyadi, I. (2015). Pengaruh Bentuk dan Material Elektrode terhadap Partial Discharge. Jurnal Teknik Elektro, 4(1), 47–51.
Putri, A. R., Kusumawati, D. H., & Suaebah, E. (2024). Karakteristik Wettability (Contact Angle) Pada Nanofiber Pani/Pva/Go Sebagai Separator Baterai Lithium-Ion. Inovasi Fisika Indonesia, 13(3), 33–39. https://doi.org/10.26740/ifi.v13n3.p33-39
Putri, I. S. (2023). Pengaruh tegangan electrospinning pada pembentukan serat nano titanium dioksida (TiO2). In Magister Thesis. Program Studi Magister Fisika. Universitas lampung: Bandar Lampung. http://digilib.unila.ac.id/id/eprint/69037
Ropikoh, S. U. (2019). Sintesis nanofiber kitosan/polyvinyl alcohol dengan metode electrospinning: kajian viskositas larutan. Departemen Fisika Fakul-tas Matematika dan Ilmu Pengetahuan Alam Institut Pertanian Bogor.
Sari, T. I. (2018). Optimasi nanofiber hasil electrospinning. In Tugas Akhir. Departemen Fisika. Institut Teknologi Sepuluh Nopember: Surabaya. http://repository.its.ac.id/id/eprint/50051
Subbiah, T., Bhat, G. S., Tock, R. W., Parameswaran, S., & Ramkumar, S. S. (2005). Electrospinning of nanofibers. Journal of Applied Polymer Science, 96(2), 557–569. https://doi.org/10.1002/app.21481
Tavana, H., Lam, C. N. C., Grundke, K., Friedel, P., Kwok, D. Y., Hair, M. L., & Neumann, A. W. (2004). Contact angle measurements with liquids consisting of bulky molecules. Journal of Colloid and Interface Science, 279(2), 493–502. https://doi.org/10.1016/j.jcis.2004.06.090
Wahyudi, T., & Sugiyana, D. (2011). Pembuatan Serat Nano Menggunakan Metode Electrospinning. Arena Tekstil, 26(1), 29–34. https://doi.org/10.31266/at.v26i1.1439
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Yoga Maharesha Berly, Tumpal Ojahan Rajagukguk, Yusup Hendronursito

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.