TRANSFORMASI LIMBAH GEOTERMAL MENJADI SUMBER SILIKA: TINJUAN POTENSI APLIKASI INDUSTRI

Authors

  • Rama Khadafi Universitas Malahayati, Lampung
  • Tumpal Ojahan R Universitas Malahayati, Lampung

DOI:

https://doi.org/10.53067/bmj.v2i4.72

Keywords:

silica scaling, geothermal waste valorization, amorphous silica, circular economy, industrial applications, Indonesia.

Abstract

Indonesia's vast geothermal potential (23.7 GW, 40% of global reserves) faces operational challenges from silica scaling amorphous SiO₂ deposition in pipelines and equipment. This review repositions scaling from a waste problem to a strategic resource, leveraging its high silica content (88–97%), amorphous structure, and unique morphology. Through systematic literature analysis, we identify two key scaling formation pathways (heterogeneous botryoidal layers and homogeneous 3D aggregates) influenced by temperature, pH, and flow dynamics. Silica scaling exhibits high surface area (up to 50 m²/g) and mesoporosity (2–50 nm), enabling extraction via alkali-acid processing into functional materials. Impurities (Fe, Al, Ca) are transformed into value-added components for catalysts, geopolymers, and composites. We map industrial applications adsorbents, ceramic fillers, and nanostructured materials based on material properties and local scalability. This circular economy approach reduces operational costs while creating new revenue streams. Key barriers include standardization gaps and supply chain integration, necessitating industry-geothermal sector collaboration for sustainable implementation in Indonesia.

References

Adiatama, A. R., Susanti, R. F., Astuti, W., Petrus, H. T. B. M., & Wanta, K. C. 2022. Synthesis and Characteristic of Nanosilica From Geothermal Sludge: Effect of Surfactant. Metalurgi, 37(2), 73–86. https://doi.org/10.14203/METALURGI.V37I2.637.

Ciptadi, S., Patangke, S. 2001. Evaluasi Potensi Silica Scaling Pada Pipa Produksi Lapangan Panas Bumi Lahedong-Sulawesi Utara. In: PROCEEDING OF THE 5 th INAGA ANNUAL SCIENTIFIC CONFERENCE & EXHIBITIONS. Yogyakarta.

Daniela B. van den Heuvel, Gunnlaugsson, E., Gunnarsson, I., Stawski, M, T., Peacock, L.C., Liane G. Benning. 2018. Understanding amorphous silica scaling under well-constrained conditions inside geothermal pipelines, Geothermics, Volume 76. https://doi.org/10.1016/j.geothermics.2018.07.006.

Farjadian, F., Roointan, A., Soliman Mohammadi-Samani, Majid Hosseini. 2019. Mesoporous silica nanoparticles: Synthesis, pharmaceutical applications, biodistribution, and biosafety assessment, Chemical Engineering Journal, Volume 359, , Pages 684-705, ISSN 1385-8947, https://doi.org/10.1016/j.cej.2018.11.156.

Fatima R, Katiyar P and Kushwaha K. 2025. Recent advances in mesoporous silica nanoparticle: synthesis, drug loading, release mechanisms, and diverse applications. Front. Nanotechnol. 7:1564188. doi: 10.3389/fnano.2025.1564188.

Guo, H., Huang, Z., Pantongsuk, T., Yu, T., Zhang, B., Luo, J., & Yuan, P. 2024. Utilisation of Biosilica as Active Silica Source for Metakaolin-Based Geopolymers. Minerals, 14(8), 816. https://doi.org/10.3390/min14080816.

Han, Yandong, Lin Zhang, and Wensheng Yang. 2024. "Synthesis of Mesoporous Silica Using the Sol–Gel Approach: Adjusting Architecture and Composition for Novel Applications" Nanomaterials 14, no. 11: 903. https://doi.org/10.3390/nano14110903.

Herianto., M.Th, Kristiati, E.A., Bambang Bintarto., Dewi Asmorowati,. 2020. Pengaruh Terbentuknya Sedimen Silika PadaPenurunan Laju Produksi Sumur Panas Bumi. LPPM UPN “Veteran” Yogyakarta Press.

https://ebtke.esdm.go.id/lintas/id/investasi-ebtke/sektor-panas-bumi/potensi di akses pada 23 Juli 2025.

https://geoportal.esdm.go.id/ebtke/ di akses pada 25 Juli 2025.

Juhri, S., Yonezu, K., Yokoyama, T., M Istiawan Nurpratama., Harijoko, A. 2019. FORMATION MECHANISM OF SILICA SCALE IN DIENG GEOTHERMAL POWER PLANT, INDONESIA, In: Proceedings 41st New Zealand Geothermal Workshop Auckland, New Zealand.

Kashpura V.N., and Potapov V.V. 2000. Study of The Amorphous Silica Scales Formation at The Mutnovskoe Hydrothermal Field (Russia), In: PROCEEDINGS, Twenty-Fifth Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California.

Mai Al Saadi, Naser Al Haddabi. The Root of Silica Scale Formation and Its Remedy Glob J Eng Sci. 3(3): 2019. GJES.MS.ID.000565. DOI: 10.33552/GJES.2019.03.000565.

Pardelli, P.T., Claretta Tempesti. C., Mannelli. A., Kravos. A., Sabard.A., Francesco Fanicchia, Shiladitya Paul, Raziye Şengun, Hakan Alp Sahiller, Ural Halaçoğlu, Ismail Pekdüz, Stefansson. A., Iwona M.Galeczka. 2021. Design of a Scaling Reduction System for Geothermal Applications. In: E3S Web of Conferences 238. https://doi.org/10.1051/e3sconf/202123801014.

Permana, M. A. I., Nandaliarsyad, N., Haq, A. Q. A., Nawansari, M. dan Mulyana, C. 2017. Kajian Potensi Silica Scaling pada Pipa Produksi Pembangkit Listrik Tenaga Panas Bumi (Geothermal). Material dan Energi Indonesia 07(01): 38–42.

Silviana, Hasbi, R., Sagita, C., Nurhayati, O., Fauzan, A., Suhartana and Hatmoko, J. 2017. Silika Alam dari Limbah Padata Pengeboran Geotermal di Dieng Sebagai Silika Gel Melalui Proses Ramah Lingkungan. In: Seminar Nasional Teknologi Industri Hijau 2. Universitas Diponegoro.pp.341–346.

Singh, P.L., Bhattacharyya, K.S., Kumar, R., Mishra, G., Sharma, U., Singh, G., Saurabh Ahalawat. 2014, Sol-Gel processing of silica nanoparticles and their applications, Advances in Colloid and Interface Science, Volume 214, Pages 17-37, https://doi.org/10.1016/j.cis.2014.10.007.

Syam, A.N., Hartini Husain, H., Pasaribu, M. 2021. Pengaruh Temperatur Terhadap Pembentukan Silika (SiO2) Scaling Pada Jalur Pipa Brine Separator Pembangkit Listrik Tenaga Panas Bumi. In; e-Prosiding Seminar Nasional Teknologi Industri VIII 2021. ISBN : 978-602-60451-8-8.

Svavarssona, G.H., Einarssona, S., Asa Brynjolfsdottir, A. 2014. Adsorption applications of unmodified geothermal silica. Geothermics, Vol.50, pp30-34. https://doi.org/10.1016/j.geothermics.2013.08.001.

Wahyudityo, R., Andang Widi Harto, W.A., Suryopratomo, K. 2013. Analisis Scaling Silika pada Pipa Injeksi Brine di Lapangan Panas Bumi Dieng dengan Studi Kasus di PT. Geo Dipa Energi. TEKNOFISIKA, Vol.2 No.1.

Xu, Y., Wang, X., Yang, L., Liu, Y., Gao, T., Li, H., Wang, Y., Xie, N., Meng, J., Ou, J., & Wang, W. 2025. Geopolymer Modified with Insoluble Calcite and Various Silica Fumes Originated from Different Manufacturing Processes. Materials (Basel, Switzerland), 18(12), 2795. https://doi.org/10.3390/ma18122795.

Downloads

Published

2025-08-04

How to Cite

Khadafi, R. ., & Ojahan R, T. . (2025). TRANSFORMASI LIMBAH GEOTERMAL MENJADI SUMBER SILIKA: TINJUAN POTENSI APLIKASI INDUSTRI. Bhinneka Multidisiplin Journal, 2(4), 226–241. https://doi.org/10.53067/bmj.v2i4.72